Rhinal-hippocampal connectivity determines memory formation during sleep.
نویسندگان
چکیده
Compared with waking state attention, volition and semantic processing play a minor role during sleep. Thus, investigating declarative memory formation during sleep may allow us to isolate mnemonic core processes. The most feasible approach to memory formation during sleep is the analysis of dream memories. Lesion and imaging studies have demonstrated that encoding of declarative memories, i.e. consciously accessible events and facts, depends on operations within the rhinal cortex and the hippocampus, two substructures of the medial temporal lobe. Successful memory formation is accompanied by a transient rhinal-hippocampal interaction. Consequently, the ability to memorize dreams may be related to mediotemporal connectivity. Therefore, we recorded EEG during sleep from rhinal and hippocampal depth electrodes implanted in 12 epilepsy patients (eight women, mean age 41.1 +/- 6.4 years). They were awakened during rapid eye movement sleep (REM) and asked to recall their dream. Via coherence analyses we show that rhinal-hippocampal connectivity values are approximately twice as large for patients with good dream recall versus those patients with poor recall. This suggests that rhinal-hippocampal connectivity is a key factor in determining declarative memory formation.
منابع مشابه
Hippocampal Sleep Features: Relations to Human Memory Function
The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep ...
متن کاملPhase-locking within human mediotemporal lobe predicts memory formation
Lesion and imaging studies have demonstrated that encoding of declarative memories, i.e. consciously accessible events and facts, is supported by processes within the rhinal cortex and the hippocampus, two substructures of the mediotemporal lobe (MTL). Successful memory formation has, for instance, been shown to be accompanied by the rhinal N400 component, followed by a hippocampal positivity, ...
متن کاملHuman declarative memory formation: segregating rhinal and hippocampal contributions.
The medial temporal lobe (MTL) is the core structure of the declarative memory system, but which specific operation is performed by anatomically defined MTL substructures? One hypothesis proposes that the hippocampus carries out an exclusively mnemonic operation during declarative memory formation that is insensitive to content, whereas the rhinal cortex carries out an operation supporting memo...
متن کاملRhinal-hippocampal coupling during declarative memory formation: dependence on item characteristics.
Lesion and imaging studies have demonstrated that encoding and retrieval of declarative memories, i.e. consciously accessible events and facts, depend on operations within the rhinal cortex and the hippocampus, two substructures of the medial temporal lobe. Analysis of intracranially recorded EEG in presurgical epilepsy patients revealed that successful memory formation is accompanied within on...
متن کاملRipples in the medial temporal lobe are relevant for human memory consolidation.
High-frequency oscillations (ripples) have been described in the hippocampus and rhinal cortex of both animals and human subjects and have been linked to replay and consolidation of previously acquired information. More specifically, studies in rodents suggested that ripples are generated in the hippocampus and are then transferred into the rhinal cortex, and that they occur predominantly durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 129 Pt 1 شماره
صفحات -
تاریخ انتشار 2006